If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-1=-361u^2
We move all terms to the left:
-1-(-361u^2)=0
We get rid of parentheses
361u^2-1=0
a = 361; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·361·(-1)
Δ = 1444
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1444}=38$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-38}{2*361}=\frac{-38}{722} =-1/19 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+38}{2*361}=\frac{38}{722} =1/19 $
| 6(t-90)=48 | | 14x+7=-8x+-88 | | -7h-8+10h+12=13 | | 11h+(-5h)+(-5h)-(-17)=20 | | 2x+16+2x=-28 | | 3x2-12x+1=0 | | 15-2(3-2k)=46 | | 3t-3t+t-1=18 | | 4x-20=2(-3x+22) | | 0.25x-5=2x | | 39=-3/2x | | 3h+(-15h)-7=(-19) | | 13y-5=9y27 | | 8+5x=100 | | 15t=10;t=6 | | (-6k)-(-7k)-(-17k)=(-18) | | 18=2u-4 | | 2w=w+26° | | −25x=65 | | c-c+3c+3c=18 | | 14x+4x+2x+3x-16x=14 | | -3/2-1/3y=-2/5 | | -2-2y=-28 | | (-3c)-(-9c)=(-12) | | 6=3x+13-2x | | 8(-5x+x)=96 | | x^2+10+70=180 | | t-t+2t-t=6 | | -3/4x+34=5/6x+13 | | 194=46-u | | 5(p+5)=100 | | 2a+4a+2a=16 |